
Efficiency in data processing
R@IISA 2019, 26th December, 2019, Mumbai, India

Jan Gorecki

https://r-iisa2019.rbind.io/

Is R still competitive for data processing tasks?

Is R still competitive for data processing tasks?

Database-like ops benchmark
benchmark runs routinely, upgrades software, re-run
benchmarking script
fully reproducible, open source
focused on one-machine environment
continuously developed; new tasks, data sizes, solutions are
being added.

h2oai.github.io/db-benchmark

https://h2oai.github.io/db-benchmark

basic questions

sum
mean
sum and mean
4 of 5 grouping by single column
1 of 5 grouping by two columns

Originally in 2014 grouping benchmark

new advanced questions

median, sd
range v1-v2: max(v1)-min(v2)
top 2 rows: order(.); head(.,2)
regression: cor(v1, v2)^2
count
grouping by 6 columns

groupby

questions

https://github.com/Rdatatable/data.table/wiki/Benchmarks-%3A-Grouping

size

1e7 rows: 0.5 GB

1e8 rows: 5 GB

1e9 rows: 50 GB

cardinality

balanced
unbalanced
heavily unbalanced

groupby

data

 id1 id2 id3 id4 id5 id6 v1 v2 v3

 <fctr> <fctr> <fctr> <int> <int> <int> <int> <int> <num>

1: id046 id007 id0000043878 51 10 59276 1 1 96.8126

2: id041 id026 id0000068300 12 58 78315 4 1 83.5654

groupby
solution version

automatically to recent devel

data.table, (py)datatable

automatically to recent stable

pandas, dplyr, dask, spark, julia DataFrames

manually to recent stable

CUDA GPU DataFrames, ClickHouse

solution syntax

Syntax of each solution is included on the benchmark plot, just next to its timing bar.

run 1st, 2nd

Each query is run twice and both timings are
presented.

timing bar cut off

Timing bar of individual run is cut off if it is too long.
Using max spark's timing +20% as a threshold.

groupby

timings

script timeout

Each solution benchmark script is terminated if it takes too long. Where too long is defined as:

1 hour for 0.5 GB data
2 hours for 5 GB data
3 hours for 50 GB data

for groupby benchmark. join benchmark timeouts are double those for groupby.

join

questions

basic questions

join on integer or factor
inner and outer join
RHS join data of size small, medium, and big

advanced questions

Join on mutliple columns and other less trivial join cases to be added.

solutions

Same as for groupby benchmark, except for ClickHouse yet.

LHS

1e7 rows: 0.5 GB

1e8 rows: 5 GB

1e9 rows: 50 GB

RHS

small: LHS/1e6

medium: LHS/1e3

big: LHS

join

data

 id1 id2 id3 id4 id5 id6 v1

 <int> <int> <int> <fctr> <fctr> <fctr> <num>

1: 8 2149 7609766 id8 id2149 id7609766 89.03174

2: 4 4831 9001786 id4 id4831 id9001786 83.71212

size

cardinality

id1, id4 - low
id2, id5 - medium
id3, id6 - high

benchmark conclusion
time is not the most important factor but just one of many
most important are correctness and capability to finish the task
there are many other factors, some of them not easy to measure or present, or even
not possible to measure because they are subjective

memory usage
lines of code
code readability
API stability
timings stability
maintenance effort
dependencies
license
...

data.table basics
extends [data.frame method

DF[i, j]

DT[i, j, by, ...]

in SQL

FROM [WHERE, SELECT, GROUP BY]

DT [i, j, by]

example

library(data.table)

DF <- iris

DT <- as.data.table(iris)

what is so special about data.table?
syntax

concise and consistent
fast to read and fast to type
corresponding to SQL queries

FROM[where|orderby, select, groupby]

faster speed

focus on implementation using efficient algorithms, some later incorporated into base R itself
using indexes, keys (clustered index)
using fewer in-memory copies also saves time

less memory usage - not only related to by reference operations but in general!

memory efficient algorithms
join and grouping at once do not materialize intermediate join results
by reference operations avoid unnecessary in-memory copies

data.table syntax

subset

rows

DF[DF$Petal.Width > 2.1,]

subset(DF, Petal.Width > 2.1)

DT[Petal.Width > 2.1]

columns

DF[, c("Petal.Width", "Petal.Length", "Species")]

DT[, .(Petal.Width, Petal.Length, Species)]

DT[, c("Petal.Width", "Petal.Length", "Species")]

data.table syntax

mean on columns

data.frame(

 Petal.Width = mean(DF$Petal.Width),

 Petal.Length = mean(DF$Petal.Length)

)

with(

 DF,

 data.frame(Petal.Width = mean(Petal.Width), Petal.Length = mean(Petal.Length))

)

as.data.frame(lapply(

 DF[, c("Petal.Width", "Petal.Length")],

 mean

))

DT[, .(Petal.Width = mean(Petal.Width), Petal.Length = mean(Petal.Length))]

DT[, lapply(.SD, mean), .SDcols = c("Petal.Width", "Petal.Length")]

data.table syntax

mean by group

tmp1 <- split(DF, DF$Species)

tmp2a <- lapply(tmp1, function(df) data.frame(

 mean(df$Petal.Width),

 mean(df$Petal.Length)

))

do.call("rbind", tmp2a)

tmp2b <- lapply(tmp1, function(df) as.data.frame(lapply(

 df[, c("Petal.Width", "Petal.Length")],

 mean

)))

do.call("rbind", tmp2b)

DT[, .(mean(Petal.Width), mean(Petal.Length)), Species]

DT[, lapply(.SD, mean), by = Species,

 .SDcols = c("Petal.Width", "Petal.Length")]

data.table syntax

subset, mean and sum by group

subDF <- DF[DF$Sepal.Width > 3.0 & DF$Sepal.Length > 4.0,]

tmp1 <- split(subDF, subDF$Species)

tmp2b <- lapply(tmp1, function(df) as.data.frame(c(

 lapply(df[, c("Petal.Width", "Petal.Length")], mean),

 lapply(df[, c("Petal.Width", "Petal.Length")], sum)

)))

do.call("rbind", tmp2b)

DT[Sepal.Width > 3.0 & Sepal.Length > 4.0,

 c(lapply(.SD, mean), lapply(.SD, sum)),

 by = Species,

 .SDcols = c("Petal.Width", "Petal.Length")]

data.table syntax

join

SDF <- data.frame(

 Species = c("setosa","versicolor","virginica"),

 ID = c(101L, 102L, 103L)

)

SDT <- as.data.table(SDF)

outer join

merge(DF, SDF, by = "Species", all.y = TRUE)

DT[SDT, on = "Species"]

inner join

merge(DF, SDF, by = "Species")

DT[SDT, on = "Species", nomatch = NULL]

data.table syntax

R's [chaining

letters[2:6][1:4][2:3] ## letters[3:4]

same R's [chaining utilized in data.table

FROM[sub-query][outer-query][...][most-outer-query]

DT[Sepal.Width > 3.0 & Sepal.Length > 4.0,

 .(mean_pet_len = mean(Petal.Length)),

 Species

][mean_pet_len > 3.0

]

thanks to H2O.ai
H2O.ai is funding a lot of data.table development. We are very thankful for this
contribution to R ecosystem.

what is H2O.ai?

H2O.ai is best known for its open source machine learning library H2O.
H2O is parallelized, distributed, supports various ML algorithms, automatic ML, and
produces high accuracy models.
It is written in java but has interfaces in multiple languages, including R.

https://cloud.r-project.org/package=h2o

thank you, questions?
r-datatable.com

h2o.ai

datatable.h2o.ai

j.gorecki _in_ wit.edu.pl

github.com/jangorecki | gitlab.com/jangorecki

http://r-datatable.com/
https://www.h2o.ai/
http://datatable.h2o.ai/
https://github.com/jangorecki
https://gitlab.com/jangorecki

